4,631 research outputs found

    Robust visual odometry using uncertainty models

    Get PDF
    In dense, urban environments, GPS by itself cannot be relied on to provide accurate positioning information. Signal reception issues (e.g. occlusion, multi-path effects) often prevent the GPS receiver from getting a positional lock, causing holes in the absolute positioning data. In order to keep assisting the driver, other sensors are required to track the vehicle motion during these periods of GPS disturbance. In this paper, we propose a novel method to use a single on-board consumer-grade camera to estimate the relative vehicle motion. The method is based on the tracking of ground plane features, taking into account the uncertainty on their backprojection as well as the uncertainty on the vehicle motion. A Hough-like parameter space vote is employed to extract motion parameters from the uncertainty models. The method is easy to calibrate and designed to be robust to outliers and bad feature quality. Preliminary testing shows good accuracy and reliability, with a positional estimate within 2 metres for a 400 metre elapsed distance. The effects of inaccurate calibration are examined using artificial datasets, suggesting a self-calibrating system may be possible in future work

    The N-Chain Hubbard model in the Composite Operator Method

    Full text link
    We propose a theoretical framework to describe the ladder systems. The N-chain Hubbard model has been studied within the Composite Operator Method. In this scheme of calculations the single-particle Green's function for any number of coupled chains is obtained by solving self-consistently a system of integral equations.Comment: 6 pages, 1 embedded Postscript figure, LaTeX, to be published in Physica

    Analysis of the total 12C(α,γ)16O cross section based on available angular distributions and other primary data

    Get PDF
    Because a knowledge of the 12C/16O ratio is crucial to the understanding of the later evolution of massive stars, new R- and K-matrix fits have been completed using the available angular distribution data from radiative α capture and elastic α scattering on 12C. Estimates of the total 12C(α,γ)16O rate at stellar energies are reported. In contrast with previous work, the analyses generally involve R- and K-matrix fits directly to the primary data, i.e., the energy- and angle-dependent differential yields, with all relevant partial waves fitted simultaneously (referred to here as surface fits). It is shown that, while the E1 part of the reaction is well constrained by a recent experiment on the β-delayed α-particle decay of 16N, only upper limits can be placed on the E2 ground state cross section factor which we take conservatively as SE2(300)<140 keV b. Simulations were then carried out to explore what kind of new data could lead to better restrictions on SE2(300). We find that improved elastic scattering data may be the best short-term candidate for such restrictions while significantly improving S(300) with new radiative capture data may require a longer-term effort. Theoretical models and estimates from α-transfer reactions for the E2 part of 12C(α,γ)16O are then discussed for comparison with the R- and K-matrix fits of the present work

    Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase.

    Get PDF
    Intracellular pathways leading from membrane receptor engagement to apoptotic cell death are still poorly characterized. We investigated the intracellular signaling generated after cross-linking of CD95 (Fas/Apo-1 antigen), a broadly expressed cell surface receptor whose engagement results in triggering of cellular apoptotic programs. DX2, a new functional anti-CD95 monoclonal antibody was produced by immunizing mice with human CD95-transfected L cells. Crosslinking of CD95 with DX2 resulted in the activation of a sphingomyelinase (SMase) in promyelocytic U937 cells, as well as in other human tumor cell lines and in CD95-transfected murine cells, as demonstrated by induction of in vivo sphingomyelin (SM) hydrolysis and generation of ceramide. Direct in vitro measurement of enzymatic activity within CD95-stimulated U937 cell extracts, using labeled SM vesicles as substrates, showed strong SMase activity, which required pH 5.0 for optimal substrate hydrolysis. Finally, all CD95-sensitive cell lines tested could be induced to undergo apoptosis after exposure to cell-permeant C2-ceramide. These data indicate that CD95 cross-linking induces SM breakdown and ceramide production through an acidic SMase, thus providing the first information regarding early signal generation from CD95, and may be relevant in defining the biochemical nature of intracellular messengers leading to apoptotic cell death

    Exact fuzzy sphere thermodynamics in matrix quantum mechanics

    Full text link
    We study thermodynamical properties of a fuzzy sphere in matrix quantum mechanics of the BFSS type including the Chern-Simons term. Various quantities are calculated to all orders in perturbation theory exploiting the one-loop saturation of the effective action in the large-N limit. The fuzzy sphere becomes unstable at sufficiently strong coupling, and the critical point is obtained explicitly as a function of the temperature. The whole phase diagram is investigated by Monte Carlo simulation. Above the critical point, we obtain perfect agreement with the all order results. In the region below the critical point, which is not accessible by perturbation theory, we observe the Hagedorn transition. In the high temperature limit our model is equivalent to a totally reduced model, and the relationship to previously known results is clarified.Comment: 22 pages, 14 figures, (v2) some typos correcte

    An augmented reality interface for visualising and interacting with virtual content

    Get PDF
    In this paper, a novel AR interface is proposed that provides generic solutions to the tasks involved in augmenting simultaneously different types of virtual information and processing of tracking data for natural interaction. Participants within the system can experience a real-time mixture of 3D objects, static video, images, textual information and 3D sound with the real environment. The userfriendly AR interface can achieve maximum interaction using simple but effective forms of collaboration based on the combinations of humancomputer interaction techniques. To prove the feasibility of the interface, the use of indoor AR techniques are employed to construct innovative applications and demonstrate examples from heritage to learning systems. Finally, an initial evaluation of the AR interface including some initial results is presented

    Spin wave dispersion softening in the ferromagnetic Kondo lattice model for manganites

    Full text link
    Spin dynamics is calculated in the ferromagnetic (FM) state of the generalized Kondo lattice model taking into account strong on-site correlations between e_g electrons and antiferromagnetic (AFM) exchange among t_{2g} spins. Our study suggests that competing FM double-exchange and AFM super-exchange interaction lead to a rather nontrivial spin-wave spectrum. While spin excitations have a conventional Dq^2 spectrum in the long-wavelength limit, there is a strong deviation from the spin-wave spectrum of the isotropic Heisenberg model close to the zone boundary. The relevance of our results to the experimental data are discussed.Comment: 6 RevTex pages, 3 embedded PostScript figure
    corecore